WS9032V Product Description

WS9032V 非隔离降压型 LED 恒流驱动芯片

特点

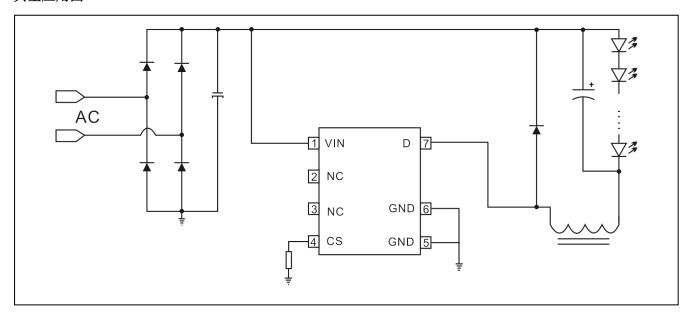
- 500V单芯片集成电路, 极少的外围元件
- 临界模式工作,无需电感补偿
- 无需 VCC 电容,没有 VCC 引脚
- 芯片自供电,无需启动电阻等供电元件
- 高达±5%的 LED 电流精度
- LED 开路保护功能
- LED 短路保护
- 智能温度控制技术,避免高温灯闪
- 彻底杜绝关灯回闪
- 引脚悬空保护

应用领域

- 球泡灯/蜡烛灯/玉米灯
- 吸顶灯/T5/T8 灯管

概述

WS9032V 是一款超低系统成本的高精度 LED 恒流驱动芯片,适合于 85V-265V 全范围交流输入电压的非隔离降压型 LED 恒流电源系统。

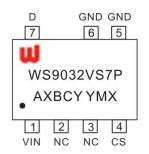

WS9032V 采用 500V 单芯片集成功率 MOSFET, 只需要很少的外围元件,即可实现优异的恒流特性。

WS9032V 芯片內带有高精度的电流取样电路,同时采用了 先进的恒流控制技术,实现高精度的 LED 恒流输出和优异 的线性调整率。芯片工作在电感电流临界模式,系统输出电 流不随电感量和 LED 工作电压的变化而变化,实现优异的 负载调整率。

WS9032V 具有多重保护功能,包括逐周期电流限制保护 (OCP), LED 开路/短路保护, VDD 欠压保护,智能温 控,管脚浮空保护等。

WS9032V 提供 7-Pin 的 SOP-7 封装.

典型应用图


WINSEMI MICROELECTRONICS WINSEMI MICROELECTRONICS WINSEMI MICROELECTRONICS WINSEMI MICROELECTRONICS WINSEMI MICROELECTRONICS

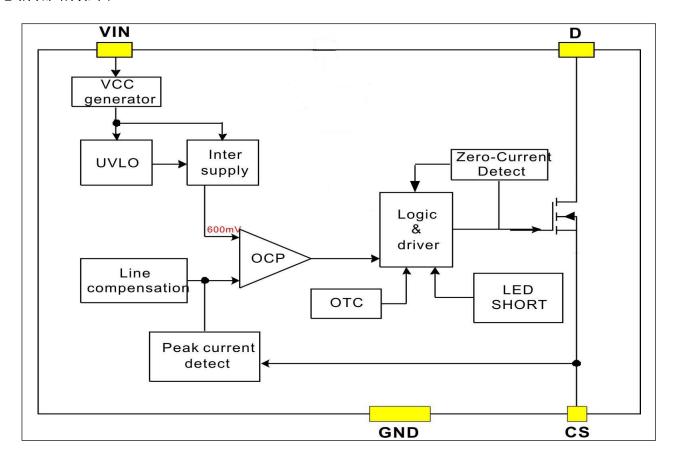
WS9032V Product Description

引脚定义与器件标识

WS9032V 提供了 7-Pin 的 SOP-7 封装, 顶层如下图所示:

WS9032VS7P: Product Code

A: 产品编码 X: 内部代码


BCY: 内部品质管控代码

YMX: D/C

引脚功能说明

引脚名	引脚号	功能说明	
VIN	1	内部供电引脚,接线电压	
NC	2/3	悬空	
CS	4	电流侦测引脚	
GND	5/6	芯片地	
D	7	内部高压 MOSFET 的漏极	

电路内部结构框图

.订购信息

封装形式	芯片表面标识	OVP 版本	采购器件名称
7-Pin SOP-7, Pb-free	WS9032VS7P	有 OVP 功能	WS9032VS7P

WS9032V Product Description

推荐工作范围 Vin 176-264VAC

符号(symbol)	输出电压	输出电流	输出功率
Vin 176-264VAC	Vout=120V	Max_lout=150mA	18W
TA	工作温度	-20~85	$^{\circ}$

极限参数

符号(symbol)	参数(parameter)	极限值	单位(unit)
Vdrain	内部高压 MOSFET 漏极电压	-0.3~500	V
CS	电流侦测引脚	7 V	
Rovp	开路保护功能选择	7	V
TJ	最大工作结温	150	$^{\circ}$
TSTG	最小/最大储藏温度	-55~150 ℃	

- 注 1: 超过上表中规定的极限参数会导致器件永久损坏。不推荐将该器件工作在以上极限条件,工作在极限条件以上,可能会影响器件的可靠性。
- 注 2: 该功耗值与散热条件相关。上表中功耗值是在未加散热片和外壳的测试板上测得的,并且环境温度 TA<40℃。
- 注 3: 输出电压需小于输入电压, 因为它是 Buck 结构。

电气特性参数(若无特殊说明, T_A=25℃)

O (III III) XX (AI) CI II // K	,						
参数	符号	测试条件	最小值	典型值	最大值	单位	
	电流检测部分						
电流检测阈值	Vth_OC		582	600	618	mV	
前沿消隐时间	TLEB			350		ns	
芯片关断延迟	TDELAY			100		ns	
		反馈输入部分					
最大消磁时间	Toff_max			430		us	
最大导通时间	Ton_max			58		us	
OVP 消磁时间	Tovp		4	4.5	5	us	
最小消磁频率	Toff_min			3		us	
	功率管						
功率管导通阻抗	Rds_on	VDD=5.6V,Idds=100mA		10		Ω	
功率管的击穿电压	BVdss		500			V	
功率管漏电流	ldss				10	uA	
温度控制							
智能温控起点	Tstart		·	145		℃	

WS9032V Product Description

功能描述

WS9032V是一款无需 VCC 引脚和 VCC 电容,专为 LED 照明设计的高性能、低成本、高集成的恒流驱动芯片,应用于非隔离的降压型 LED 电源系统。它内部单芯片集成 500V 功率 MOSFET,并且采用先进的恒流控制方法和源极驱动技术,只需要很少的外围元件就可以达到优异的恒流特性,系统成本低,效率高。

启动

系统上电后,30ms 芯片开始工作,可实现即开即亮; WS9032V 正常工作时由 HV 端实时给芯片供电,无需任何供电元件和 VCC 电容。

恒流控制,输出 LED 电流设置

WS9032V采用专利的恒流控制方法,只需要很少的外围元件,即可实现高精度的恒流输出。芯片逐周期检测电感的峰值电流, CS 端连接到内部峰值电流比较器的输入端,与内部600mV阈值电压进行比较,当 CS 电压达到内部检测阈值时,功率管关断。CS 比较器的输出还包括一个 350ns 的前沿消隐时间。

电感峰值电流的计算公式:

$$I_{PK} = \frac{600}{R_{CS}} (mA)$$

其中,RCS为电流检测电阻阻值。 LED 输出电流计算公式:

$$I_{LED} = \frac{I_{PK}}{2}$$

其中, IPK 是电感的峰值电流。

线电压补偿

WS9032V 內置线电压补偿功能,使得 LED 电流在全电压范围 内都能保持一致,具有非常小的线性调整率,确保高的恒流精 度。

智能温控

当芯片内部结温达到 145 度时,芯片开始降频工作(具体降频温度点由负载条件决定);直到温度达到 180 度时,频率降至最低,芯片以最大关断时间开启。

储能电感

WS9032V工作在电感电流临界模式,当芯片输出脉冲时,内置功率 MOSFET 导通,流过储能电感的电流从零开始上升,功率管的导通时间为:

$$t_{on} = \frac{L \times I_{PK}}{V_{IN} - V_{LED}}$$

其中,L 是电感的感量; IPK 是流过电感的电流峰值; VIN 是输入交流经整流后的直流电压; VLED 是输出 LED 上的电压。 当芯片输出脉冲关断时,内置功率 MOSFET 也被关断,流过储能电感的电流从峰值开始往下降,当电感电流下降到零时,芯片再次输出脉冲。功率管的关断时间为:

$$t_{off} = \frac{L \times I_{PK}}{V_{LED}}$$

储能电感的计算公式为:

$$L = \frac{V_{LED} \times (V_{IN} - V_{LED})}{f \times I_{PK} \times V_{IN}}$$

其中 f 为系统工作频率。WS9032V 的系统工作频率和输入电压成正比关系,设置 WS9032V 系统工作频率时,选择在输入电压最低时设置系统的最低工作频率,而当输入电压最高时,系统的工作频率也最高。

WS9032V设置了系统的最小退磁时间和最大退磁时间,分别为 3us 和 250us。由 Toff 的计算公式可知,如果电感量很小时,Toff 很可能会小于芯片的最小退磁时间,这时系统就会进入电感电流断续模式,LED 输出电流会背离设计值;而当电感量很大时,Toff 又可能会超出芯片的最大退磁时间,这时系统就会进入电感电流连续模式,输出 LED 电流同样也会背离设计值。所以选择合适的电感值很重要。

引脚悬空保护

WS9032V的引脚悬空时,不会引起系统的损坏。

LED 开路保护

WS9032V 内置了可供选择的开路保护功能,当 LED 开路时,输出电压逐周期增加,消磁时间变短,当消磁时间 tovp 小于4.5us 时,芯片会认为输出开路,进入自动重启的开路保护状态。开路保护电压计算公式如下:

WINSEMI MICROELECTRONICS WINSEMI MICROELECTRONICS WINSEMI MICROELECTRONICS WINSEMI MICROELECTRONICS WINSEMI MICROELECTRONICS

WS9032V Product Description

$$Vovp = \frac{L \times V_{CS}}{R_{CS} \times t_{OVP}}$$

其中, Vcs 是 CS 的逐周期关断阈值(0.6V); Vovp 是所设定的过压保护点;

建议开路保护电压设置为最大负载电压的 1.5 倍以上。

开路保护时,芯片每隔 30ms 会发出一簇脉冲,用于侦测开路保护是否解除,如果解除,则恢复正常工作,否则,继续循环反复。

LED 短路保护

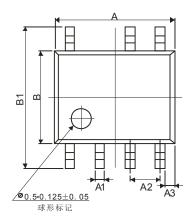
当输出 LED 短路时, WS9032V 会以 4KHz 的最低工作频率工作, 从而使系统具有极低的短路功耗, 保证系统的安全。

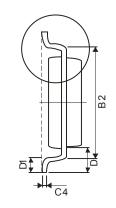
PCB 设计

在设计 WS9032V PCB 时,需要遵循以下指南:

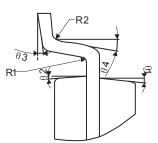
旁路电容: VDD 的旁路电容需要紧靠芯片 VDD 和 GND 引脚。

地线: 电流采样电阻的功率地线尽可能短,且要和芯片的地 线及其它小信号的地线分头接到 Bulk 电容的地端。


功率环路: 功率环路的面积要尽量小,以减小 EMI 辐射。芯片远离续流二极管等发热元件。


DRAIN 脚:增加此引脚的铺铜面积以提高芯片散热。

WS9032V Product Description



SOP-7封装外观图

	Winsemi				
O b. a.l.	Dimensions in Millimeters		Dimensions in Inches		
Symbol	Min	Max	Min	Max	
Α	4.70	5.10	0.185	0.201	
В	3.70	4.10	0.146	0.161	
С	1.25	1.65	0.049	0.065	
A1	0.35	0.48	0.014	0.019	
A2	1.27TYP		0.05TYP		
A3	0.345TYP		0.014TYP		
B1	5.80	6.30	0.228	0.248	
B2	5.00TYP		0.197TYP		
C1	0.55	0.70	0.022	0.028	
C2	0.55	0.70	0.022	0.028	
C3	0.05	0.225	0.002	0.009	
C4	0.203TYP		0.008TYP		
D	1.05TYP		0.041TYP		
D1	0.40	0.80	0.016	0.031	

WS9032V Product Description

注意事项

- 1. 购买时请认清公司商标,如有疑问请与公司本部联系。
- 2. 在电路设计时请不要超过器件的绝对最大额定值,否则会影响整机的可靠性。
- 3. 本说明书如有版本变更不另外告知。

联系方式

深圳市津利帝科技有限公司

公司地址:深圳市福田区振华路122号海外装饰大厦A1208

邮编:518114

总机:0755-89818866 传真:0755-84276832

网址:http://www.jinlidi.cn

手机:13828992738 (微信同)陈先生

QQ: 3091784316

邮箱:sales@jinlidi.cn