

高 PF 高压线性 LED 恒流驱动器

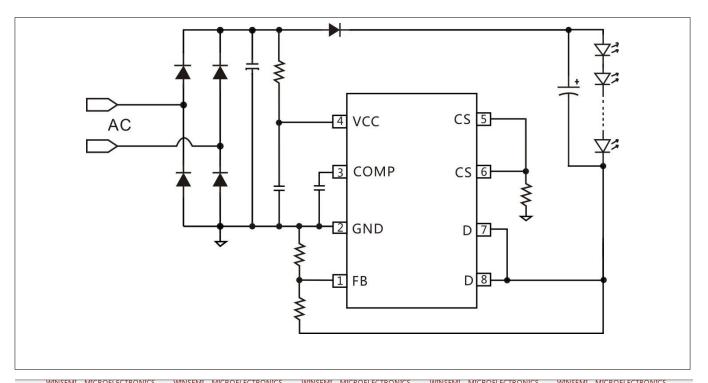
特点

- 较高的PF值(0.7)
- 专利的高效率,低的温升技术
- 动态温度补偿,避免高温灯闪
- 内置500V功率MOSFET
- 线性驱动,不存在EMI问题
- LED开路/短路保护
- 外围元件少,可与灯珠共板
- ±3%恒流精度

概述

WS3611 是一款高功率因素(高 PF)的高压线性恒流驱动器,可直接驱动高压 LED 灯串。其电源系统结构简单,只需很少的外围元件就可以实现非常优秀的恒流特性。主要应用于对体积、成本要求非常苛刻的非隔离 LED 恒流驱动电源系统。

WS3611 还可以多芯片并联应用,从而提高系统的输出电流能力; 其输出电流可通过 CS 引脚的电阻来进行设置。

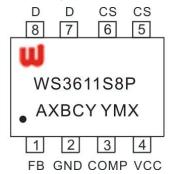

WS3611 具有输出 LED 开路保护功能。

WS3611 提供 SOP-8 封装。

应用领域

■ LED驱动电源

典型应用图



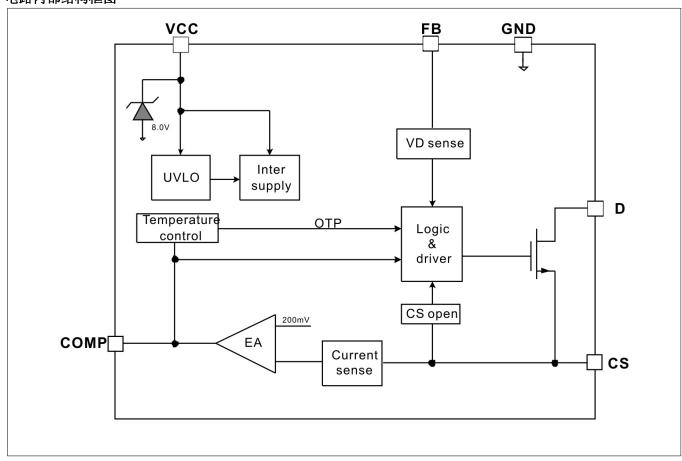
WS3611 Product Description

引脚定义与器件标识

WS3611 提供了 8-Pin 的 SOP-8 封装, 顶层如下图所示:

WS3611S8P: Product Code

A: 产品编码 X: 内部代码


BCY: 内部品质管控代码

YMX: D/C

引脚功能说明

引脚名	引脚号	功能说明	
COMP	3	环路补偿端,接电容到地	
VCC	4	芯片电源端	
FB	1	功率管漏极(D)电压侦测引脚	
CS	5,6	电流采样端与内部高压 MOS 管源极	
D	7,8	内部高压 MOS 管的漏极	
GND	2	芯片地	

电路内部结构框图

WS3611 Product Description

订购信息

封装形式	芯片表面标识	采购器件名称	
8-Pin SOP-8, Pb-free	WS3611S8P	WS3611S8P	

推荐应用功率

型号	封装形式	输入电压	最大输出功率
W0004400D	SOP8	单电压(200VAC-264VAC)	260V/25mA
WS3611S8P		单电压(100VAC-132VAC)	130V/25mA
TA	工作温度	-20~85℃	

极限参数(注1)

符号	参数	极限值	单位
VCC	电源电压输入	-0.3~钳位电压	V
VD	内部功率管的漏端电压	-0.3~500	V
VCS	CS 电流采样端电压	-0.3~7	V
VFB	反馈电压输入	-0.3~7	V
VCOMP	环路补偿脚电压	-0.3~7	V
PDMAX	功耗 (注 2)	0.45	W
TJ	最大工作结温	160	$^{\circ}$
TSTG	最小/最大储藏温度	-55~150	$^{\circ}$

注 1: 超过上表中规定的极限参数会导致器件永久损坏。不推荐将该器件工作在以上极限条件,工作在极限条件以上,会影响器件的可靠性。

注 2: 该功耗值与散热条件相关。上表中功耗值是在未加散热片和外壳的测试板上测得的,并且环境温度 TA<40 $\mathbb C$ 。

WS3611 Product Description

电气特性参数(若无特殊说明,中文新宋体小五号,英文 Arial 小五号)

符号	参数	测试条件	最小值	典型值	最大值	单位
电源供电	部分					
$V_{\text{cc_clamp}}$	VCC 钳位电压		7. 5	8. 0	8.5	V
$I_{\rm cc_clamp}$	VCC 钳位电流				5	mA
$V_{\text{CC_ST}}$	芯片启动电压	VCC 上升	7. 07	7. 57	8. 07	V
$V_{\rm uv1o_HYS}$	欠压保护迟滞	VCC 下降		1.8		V
$I_{\rm st}$	启动电流	VCC <vcc_st-0.5v< td=""><td></td><td>70</td><td>100</td><td>uA</td></vcc_st-0.5v<>		70	100	uA
I_{op}	工作电流			250	350	uА
环路补偿						
V_{REF}	内部基准电压		194	200	206	mV
$V_{\scriptscriptstyle CL}$	Comp 最低电压			0		V
V_{CH}	Comp 最高电压			5		V
反馈输入	.部分					
$V_{\scriptscriptstyle FBS}$	FB 调节起始电压	FB 大于此电压之后 CS 减小		1. 0		V
$V_{\scriptscriptstyle FBE}$	FB 调节结束电压	CS 减到最小		2. 0		V
高压功率	管部分					
V_{DS}	漏源击穿电压		500			V
过温保护	1					
$T_{\rm comp}$	智能温度调节起点			150		°C
$T_{\scriptscriptstyle SD}$	过热关断温度			160		°C
T _{SD_HYS}	过热保护迟滞			30		$^{\circ}$ C

WINSEMI MICROELECTRONICS WINSEMI MICROELECTRONICS WINSEMI MICROELECTRONICS WINSEMI MICROELECTRONICS WINSEMI MICROELECTRONICS

WS3611 Product Description

功能描述

WS3611 是一款高 PF 低温升的高压线性 LED 恒流驱动芯片,芯片采用特有的专利技术,在漏端电压较低处传输绝大部分能量,从而获得 0.7 以上的功率因素和较低的温升。

输出电流

$$I_{LED} = \frac{0.2V}{2*Rcs}$$

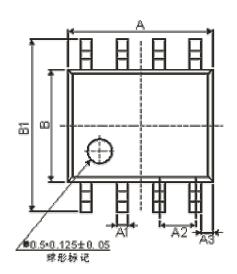
FB 电压检测

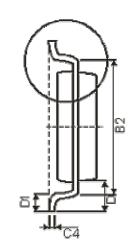
系统的能量传输绝大部分发生在 FB<1V 的阶段,即 D 端电压的波谷处,FB>1V 时,功率管电流开始迅速减小,并在FB>2V 时减到最小,从而保证较高的功率因素和最低的温升

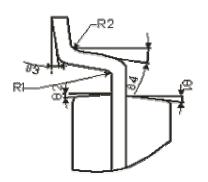
与线性损耗。

输出开路保护

WS3611 内部集成了输出开路保护,一旦检测到输出开路, 系统会自动进入打嗝模式, 直到开路保护条件除去。


过热自动调节输出电流


WS3611 具有过热调节功能,在驱动电源过热时逐渐减小输出电流,从而控制输出功率和温升,使电源温度保持在设定值,以提高系统的可靠性。芯片内部设定过热调节温度点为150℃。


封装信息

SOP-8 封装外观图

	Winsemi				
0	Dimensions in Millimeters		Dimensions in Inches		
Symbol	Min	Max	Min	Max	
А	4.70	5.10	0.185	0.201	
В	3.70	4.10	0.146	0.161	
С	1.30	1.50	0.051	0.059	
A1	0.35	0.48	0.014	0.019	
A2	1.27TYP		0.05TYP		
А3	0.345TYP		0.014TYP		
B1	5.80	6.20	0.228	0.244	
B2	5.00TYP 0.197TYP		TYP		
C1	0.55	0.70	0.022	0.028	
C2	0.55	0.70	0.022	0.028	
C3	0.05	0.225	0.002	0.009	
C4	0.203TYP		0.008TYP		
D	1.05TYP		0.041TYP		
D1	0.40	0.80	0.016	0.031	

WS3611 Product Description

注意事项

- 1. 购买时请认清公司商标,如有疑问请与公司本部联系。
- 2. 在电路设计时请不要超过器件的绝对最大额定值,否则会影响整机的可靠性。
- 3. 本说明书如有版本变更不另外告知。

联系方式

深圳市津利帝科技有限公司

公司地址:深圳市龙岗区布吉街道上水径布龙路171号全伟达工业园3号楼2楼

邮编:518114

总机:0755-89818866 传真:0755-84276832

网址:http://www.jinlidi.cn 手机:13828992738 陈先生

QQ: 3091784316

7/7