

WS3480 非隔离降压型 LED 恒流驱动芯片

特点

- 600V单芯片集成电路, 极少的外围元件
- TO-92 封装,空间高度节省
- 临界模式工作,无需电感补偿
- 内置 600V 功率 MOSFET
- 芯片自供电,无需启动电阻等供电元件
- 高达±5%的 LED 电流精度
- 高达 93%以上的系统效率
- LED 开路保护和短路保护
- 智能温度控制技术,避免高温灯闪
- 芯片过温保护
- ■引脚悬空保护

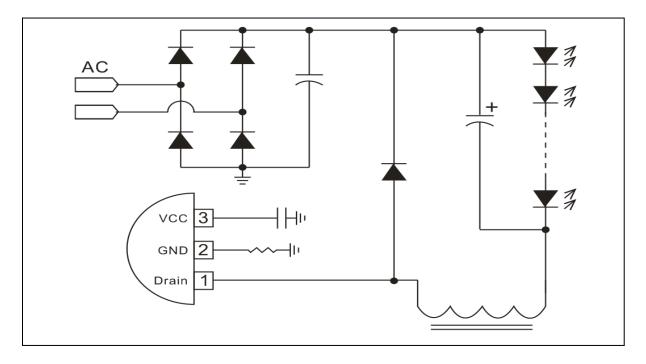
应用领域

- 球泡灯
- 蜡烛灯
- 玉米灯

概述

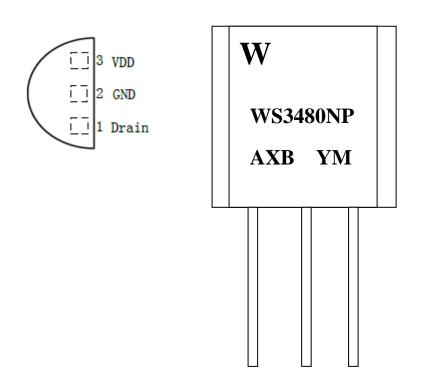
WS3480 是一款超低系统成本的高精度 LED 恒流驱动芯片,适合于 85V-265V 全范围交流输入电压的非隔离降压型 LED 恒流电源系统。

WS3480 采用 600V 单芯片集成功率 MOSFET, 只需要很少的外围元件,即可实现优异的恒流特性。


WS3480 芯片内带有高精度的电流取样电路,同时采用了先进的恒流控制技术,实现高精度的 LED 恒流输出和优异的线性调整率。芯片工作在电感电流临界模式,系统输出电流不随电感量和 LED 工作电压的变化而变化,实现优异的负载调整率。

WS3480 具有多重保护功能,包括逐周期电流限制保护 (OCP),LED开路/短路保护,VDD欠压保护以及嵌位, 过温保护,管脚浮空保护等。

WS3480 提供 3-Pin 的 TO-92 封装。



典型应用图

引脚定义与器件标识

WS3480 提供了 3-Pin 的 TO-92 封装, 顶层如下图所示:

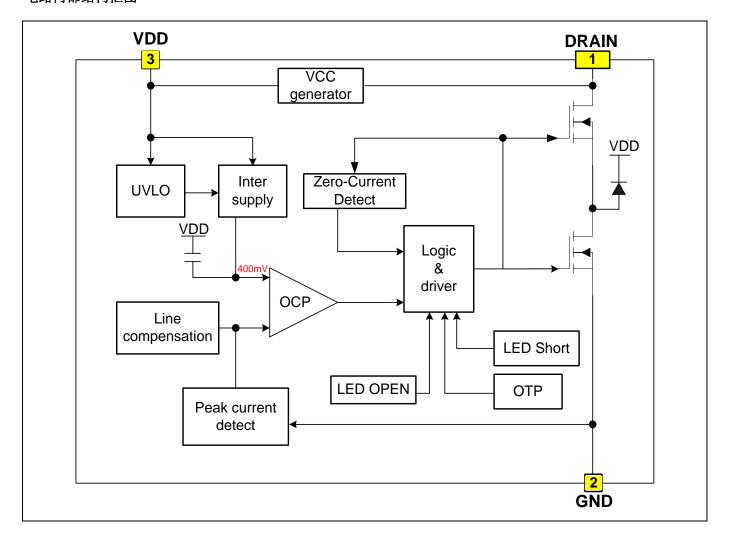
WS3480NP: Product Code

A:产品编码

X:内部代码

B: 地域代码

YM: 年代码, 月代码


WS3480 Product Description

引脚功能说明

引脚名	引脚号	功能说明	
DRAIN	1	内部高压 MOSFET 的漏极	
GND	2	芯片地	
VCC	3	芯片电源端	

电路内部结构框图

订购信息

封裝形式	芯片表面标识	采购器件名称
3-Pin TO-92, Pb-free	WS3480	WS3480

推荐工作范围

符号(symbol) 输入电压范围		输出功率	输出电流	
	90VAC—264VAC	3W	<100mA	
Ро	175VAC—264VAC	6W	<100mA	
		8W	<70mA	
TA	工作温度	- 20 ℃	~ 85 °C	

WS3480 Product Description

极限参数

符号(symbol)	参数(parameter)	极限值	单位(unit)
Vdrain	内部高压 MOSFET 漏极电压	0.3~600	V
VCC	芯片电源电压	7	V
ICC_MAX	VCC 钳位电流	10	mA
封装热阻	封装热阻 TO-92	83	°C/W
TJ	最大工作结温	150	°C
TSTG	最小/最大储藏温度	-55~150	°C

- 注 1: 超过上表中规定的极限参数会导致器件永久损坏。不推荐将该器件工作在以上极限条件,工作在极限条件以上,可能会影响器件的可靠性。
- 注 2: 该功耗值与散热条件相关。上表中功耗值是在未加散热片和外壳的测试板上测得的,并且环境温度 TA<40℃。
- 注 3: 输出电压需小于输入电压, 因为它是 Buck 结构。

电气特性参数(若无特殊说明, T_A=25℃, VCC=7V)

参数	符号	测试条件	最小值	典型值	最大值	单位
	1/1 2	例 风 汞 干	取小阻	典至祖	取八恒	- 平位
电源供电部分					1	
VDD 嵌位电压	VDD_CLAMP	10mA		6.3		V
VDD 供电压	VDD_reg			5.8	6.1	V
VDD 欠压保护	UVLO_off			5.3		V
静态电流	I_VDD	VDD=6.1V		150	250	uA
电流检测部分						
电流检测阈值	Vth_OC		392	400	408	mV
前沿消隐时间	TLEB			500		ns
芯片关断延迟	TDELAY			100		ns
反馈输入部分						
最大消磁时间	Toff_max			255		us
最小消磁频率	Toff_min			3.6		us
开路检测参考消磁时间	Tdem_OVP			5		us
恒流模式下消磁时间与	To a /T da ma			0		
开关周期时间的比值	Tcc/Tdem			2		
功率管						
功率管导通阻抗	Rds_on	Idrain=50mA		32	40	Ω
功率管的击穿电压	BVdss		600			V
功率管漏电流	ldss				10	uA
过温保护						
过温保护阈值	T_f			160		$^{\circ}$
过温保护迟滞	T_hys			30		$^{\circ}$

功能描述

WS3480 是一款专为 LED 照明设计的高性能、低成本、高集成的恒流驱动芯片,应用于非隔离的降压型 LED 电源系统。它内部单芯片集成 600V 功率 MOSFET,并且采用先进的恒流控制方法和源极驱动技术,只需要很少的外围元件就可以达到优异的恒流特性,系统成本低,效率高。

启动

系统上电后,线电压通过芯片内部启动电路对 VCC 电容充电,当 VCC 电压达到芯片开启阈值时,芯片开始工作;芯片启动时间小于 100ms,可实现即开即亮; WS3480 内部将 VCC 电压被箝位到 6.3V,正常工作时由 drain 端动态给 VCC 供电,无需任何供电元件。

恒流控制,输出 LED 电流设置

WS3480 采用专利的恒流控制方法,只需要很少的外围元件,即可实现高精度的恒流输出。芯片逐周期检测电感的峰值电流,CS 端连接到内部峰值电流比较器的输入端,与内部500mV 阈值电压进行比较,当 CS 电压达到内部检测阈值时,功率管关断。CS 比较器的输出还包括一个500ns 的前沿消隐时间。

电感峰值电流的计算公式:

$$I_{PK} = \frac{400}{R_{CS}} (mA)$$

其中,RCS 为电流检测电阻阻值。 LED 输出电流计算公式:

$$I_{LED} = \frac{I_{PK}}{2}$$

其中, IPK 是电感的峰值电流。

线电压补偿

WS3480 内置线电压补偿功能,使得 LED 电流在全电压范围 内都能保持一致,具有非常小的线性调整率,确保高的恒流精 度。

过温保护

当芯片内部结温达到 160 度时,芯片会进入过温保护,直到温度低于 130 度才再次开启。

储能电感

WS3480 工作在电感电流临界模式,当芯片输出脉冲时,内置功率 MOSFET 导通,流过储能电感的电流从零开始上升,功率管的导通时间为:

$$t_{on} = \frac{L \times I_{PK}}{V_{IN} - V_{LED}}$$

其中,L 是电感的感量;IPK 是流过电感的电流峰值;VIN 是输入交流经整流后的直流电压;VLED 是输出 LED 上的电压。当芯片输出脉冲关断时,内置功率 MOSFET 也被关断,流过储能电感的电流从峰值开始往下降,当电感电流下降到零时,芯片再次输出脉冲。功率管的关断时间为:

$$t_{off} = \frac{L \times I_{PK}}{V_{LED}}$$

储能电感的计算公式为:

$$L = \frac{V_{LED} \times (V_{IN} - V_{LED})}{f \times I_{PK} \times V_{IN}}$$

其中 f 为系统工作频率。WS3480 的系统工作频率和输入电压成正比关系,设置 WS3480 系统工作频率时,选择在输入电压最低时设置系统的最低工作频率,而当输入电压最高时,系统的工作频率也最高。

WS3480 设置了系统的最小退磁时间和最大退磁时间,分别为 3.6us 和 255us。由 Toff 的计算公式可知,如果电感量很小时,Toff 很可能会小于芯片的最小退磁时间,这时系统就会进入电感电流断续模式,LED 输出电流会背离设计值;而当电感量很大时,Toff 又可能会超出芯片的最大退磁时间,这时系统就会进入电感电流连续模式,输出 LED 电流同样也会背离设计值。所以选择合适的电感值很重要。

引脚悬空保护

WS3480 的引脚悬空时,不会引起系统的损坏。

软驱动

WS3480 的驱动输出具有软驱动功能,通过合理控制功率 MOSFET 栅极的的上升时间使得系统的 EMI 性能达到最好。

LED 短路保护

WINSEMI MICROELECTRONICS WINSEMI MICROELECTRONICS WINSEMI MICROELECTRONICS WINSEMI MICROELECTRONICS WINSEMI MICROELECTRONICS

当输出 LED 短路时, WS3480 会以 4KHz 的最低工作频率工作, 从而使系统具有极低的短路功耗, 保证系统的安全。

LED 开路保护

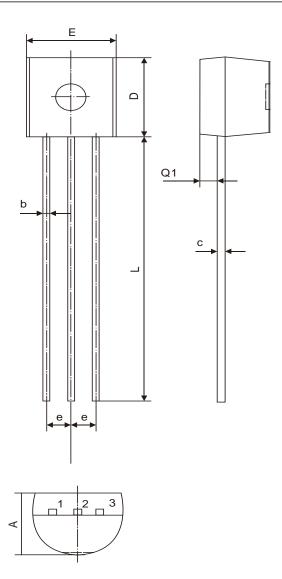
WS3480 内置了开路保护功能,当 LED 开路时,输出电压逐周期增加,消磁时间变短,当消磁时间 Tovp 小于 5us 时,芯片会认为输出开路,进入自动重启的开路保护状态。开路保护电压计算公式如下:

$$Tovp = \frac{L \times V_{CS}}{R_{CS} \times V_{OVP}}$$

其中,Vcs是CS的逐周期关断阈值(0.4V);Vovp是所设定的过压保护点;建议开路保护电压设置为最大负载电压的 1.5 倍以上。开路保护时,芯片会进入VCC的UVLO自动重启,VCC会在5.8V到6.3V之间震荡,每隔64个UVLO重启周期,芯片会发出一簇脉冲,用于侦测开路保护是否解除,如果解除,则恢复正常工作,否则,继续循环反复。

PCB 设计

在设计 WS3480 PCB 时,需要遵循以下指南:


旁路电容: VCC 的旁路电容需要紧靠芯片 VCC 和 GND 引脚。 **地线**: 电流采样电阻的功率地线尽可能短,且要和芯片的地线 及其它小信号的地线分头接到 Bulk 电容的地端。

功率环路: 功率环路的面积要尽量小,以减小 **EMI** 辐射。芯片远离续流二极管等发热元件。

DRAIN 脚:增加此引脚的铺铜面积以提高芯片散热。

TO-92 封装外观图

	Winsemi			
Cymahal	Dimensions in Millimeters		Dimensions in Inches	
Symbol	Min	Max	Min	Max
А	4.70	5.10	0.185	0.201
В	3.70	4.10	0.146	0.161
С	1.30	1.50	0.051	0.059
A1	0.35	0.48	0.014	0.019
A2	1.27TYP		0.05TYP	
A3	0.345TYP		0.014TYP	
B1	5.80	6.20	0.228	0.244
B2	5.00TYP		0.197TYP	
C1	0.55	0.70	0.022	0.028
C2	0.55	0.70	0.022	0.028
C3	0.05	0.225	0.002	0.009
C4	0.203TYP		0.008TYP	
D	1.05TYP		0.041TYP	
D1	0.40	0.80	0.016	0.031

联系人:陈先生13828992738 QQ3091784316

WS3480 Product Description

注意事项

- 1. 购买时请认清公司商标,如有疑问请与公司本部联系。
- 2. 在电路设计时请不要超过器件的绝对最大额定值,否则会影响整机的可靠性。
- 3. 本说明书如有版本变更不另外告知。

联系方式

深圳市津利帝科技有限公司

公司地址:深圳市龙岗区布吉街道上水径布龙路171号全伟达工业园3号楼2楼

邮编:518114

总机:0755-89818866 传真:0755-84276832

网址:http://www.jinlidi.cn 手机:13828992738 陈先生

QQ: 3091784316

Winsemi Microelectronics Winsemi Microelectronics Winsemi Microelectronics Winsemi Microelectronics Winsemi Microelectronics