

开关电源转换器集成电路

特点

- 低启动电流(4uA)
- 低工作电流(正常 1.7mA, 空载 0.9mA)
- 极低的待机功耗
- 电流模式工作
- 专利的最优化降频与抖频性能
- 次边肖特基短路保护
- 逐周期电流限制保护(OCP)
- CS 开路保护
- 内置过温保护(OTP)
- 软启动功能(Soft-start)
- 内置 VDD 过压保护和嵌位
- 低电压关闭功能(UVLO)
- 宽的工作电压范围(7.7V-34V)
- 棚驱动输出电压嵌位(13V)
- 软驱动功能(Soft-driver)
- 频率抖动功能
- 恒定输出功率限制
- 过载保护(OLP)

应用领域

- 开关电源设备以及离线 AC/DC 反激式电源 转换器:
- 电源适配器
- 机顶盒电源
- 开放式开关电源
- 电池充电器

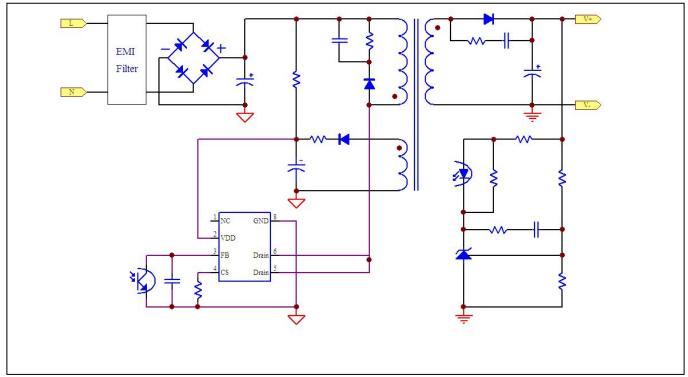
概述

WS2295B 是一款高集成度、高性能的电流模式 PWM 转换器 芯片。适用于电源适配器等中小功率的开关电源设备。

为了降低待机功耗,满足更高的绿色环保标准,芯片提供了脉冲模式(Burst Mode)功能、极低的启动电流和工作电流。脉冲模式即在轻载或者无负载情况下,WS2295B可以线性地降低芯片的开关频率,因此减少开关的损耗;空载节能的专利技术,使得WS2295B可以轻易实现低于75mw的待机功耗,并使效率能优于能效六的要求。

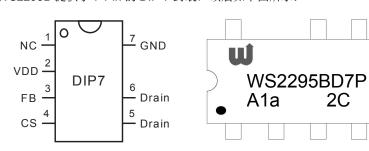
WS2295B 优化了降频与抖频的关系曲线,在频率降低时,抖频范围不会随频率等比例降低,从而使得系统在中、轻载时 EMI 得以有较大改善。此外 WS2295B 具有极宽的工作电压范围(7.7V-34V),大大方便了变压器的设计和系统的兼容性。

WS2295B 内置的同步斜坡补偿电路,防止 PWM 控制器在高占空比工作时候可能产生的谐波振荡。WS2295B 在电流采样输入引脚端内置了前沿消隐功能,能有效去除电流反馈信号中的毛刺。有助于减少外部元器件数量,降低系统的整体成本。WS2295B 提供了多种全面的可恢复保护模式,其中包括:逐周期电流限制保护(OCP)、过载保护(OLP)、过温保护(OTP)、VDD 电压的过压保护和嵌位、以及低压关闭(UVLO)、次边肖特基短路保护;为了更好的保护内置 MOSFET 功率管,栅极驱动输出电压被嵌位在 13V。


WS2295B在图腾柱栅极驱动输出端使用了频率抖动技术和软开关控制技术,可以很好的改善开关电源系统的EMI性能。通过优化设计,当芯片的工作频率低于20KHz的情况下,音频能量可以降到最小值。因此,音频噪声性能可以获得很大的改善。WS2295B芯片可以作为线性电源或者RCC模式电源的最佳替代产品,从而提高开关电源系统的整体性能,并有效地降低系统成本。

WS2295B 提供 7-Pin 的 DIP-7 的封装形式。

WINSEMI MICROELECTRONICS WINSEMI MICROELECTRONICS WINSEMI MICROELECTRONICS WINSEMI MICROELECTRONICS WINSEMI MICROELECTRONICS



典型应用图

引脚定义与器件标识

WS2295B 提供了 7-Pin 的 DIP-7 封装, 顶层如下图所示:

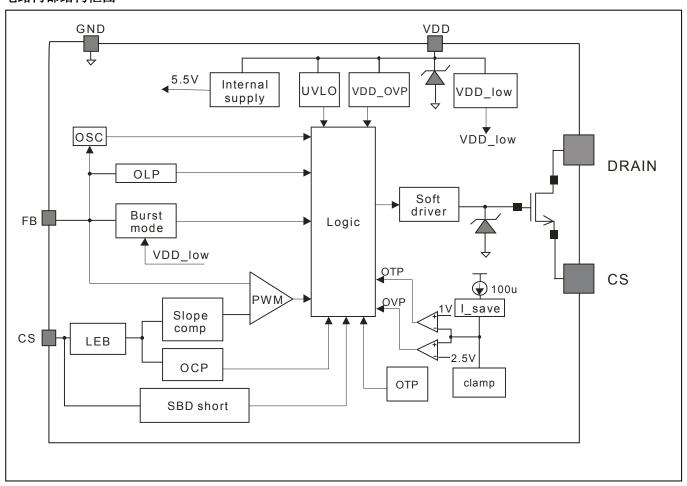
WS2295B:WS2295/WS2297

D7P: DIP-7, Lead Free

A1a 芯片代码+版本+场地代码

2C 批号: Y+M(2=2012年

C=12 月(1,2...A=10,B=11,C=12))


引脚功能说明

21 Net -27 HG MG -27			
引脚名	引脚号	引脚类型	功能说明
NC	1	NC	悬空引脚
VDD	2	电 源	电源
FB	3	反馈输入	反馈输入引脚。其输入电平值与4脚的电流监测值共同确定 PWM控制信号的占空比。如果FB端的输入电压大于某个设定的 阈值电压,则内部的保护电路会自动关断 PWM 输出。
CS	4	电流监测	电流监测反馈输入引脚。用于判断是否达到限流值。
DRIAN	5/6	内置功率 管的漏极	内置功率管的漏极,与变压器的原边相连。
GND	7	地	地

2C

电路内部结构框图

输出功率表

产品	230VAC±15% 85-265VAC	
<i>)</i> — пп	Adapter1	Adapter1
WS2295B	18W	12W

注意:以上数据是在环境温度50℃左右,散热足够的适配器中测得。

订购信息

封装形式	芯片表面标识	采购器件名称
7-Pin DIP-7, Pb-free	WS2295BD7P	WS2295BD7P (DIP-7)

推荐工作条件

符号(symbol)	参数(parameter)	值(value)	单位(unit)
VDD	VDD 供电电压	10~30	V
T _A	操作温度	-20~85	$^{\circ}$ C

极限参数

W-11-12-22-22-22-22-22-22-22-22-22-22-22-							
符号(symbol)	参数(parameter)	极限值	单位(unit)				
VDD	DC 供电电压	34.5	V				

联系人:陈先生13828992738 QQ3091784316

WS2295B Product Description

			WINSEMI
V _{FB}	FB 引脚输入电压	-0.3~7	V
V _{SENSE}	SENSE 引脚输入电压	-0.3~7	V
V _{DRAIN}	DRAIN 引脚电压	-0.3~650	V
TJ	工作结温	-20~150	$^{\circ}$
T _{STG}	保存温度	-40~150	°C
Vcv	VDD 嵌位电压	35.5	V
lcc	VDD DC 嵌位电流	10	mA

注意:超过上表中规定的极限参数会导致器件永久损坏。不推荐将该器件工作在以上极限条件,工作在极限条件以上,可能会影响器件的可靠性。

ESD 参数

符号(symbol) 参数(parameter)		值(value)	单位(unit)
V _{ESD-HBM}	人体模型	3	KV
V _{ESD-MM}	机器模型	300	V

电气特性参数

Supply Voltage	(VDD)					
symbol	parameter	Test condition	Min	Тур	Max	Unit
VDD_OP	Operation voltage				34	V
UVLO_ON	Turn on threshold Voltage		7.2	7.9	9.0	V
UVLO_OFF	Turn-off threshold Voltage		14.0	15.0	16.0	V
I_VDD_ST	Start up current	VDD=13V		4	10	uA
L VDD OD	Operation Current	VDD=16V, V _{FB} =3V		1.7	2.5	m A
I_VDD_OP	Operation Current	GATE with 1nF to GND		1.7	2.5	mA
VDD_OVP				34.5		V
VDD_Clamp	VDD Zener Clamp Voltage	IVDD=10mA		35.5		V
VDD_latch 删除	Latch release threshold	VDD fall from 16V@latch mode	4.1	5.1	6.1	V
I_latch 删除	lvdd @ latch mode	VDD=7V @ latch mode		43		uA
Feedback Input	Section			•		
V _{FB} _Open	V _{FB} Open Loop Voltage	VDD=16V,FB open,	4.3	5.0	5.6	V
I _{FB} _Short	FB Pin Short Current	FB Shorted to GND	0.22	0.315	0.41	mA
V _{TH} _PL	Power limiting FB Threshold	VDD=16V	3.2	3.65	4.0	V
T _D _PL	Power limiting Debounce	VDD=16V, FB open	48	60	72	ms
Z _{FB} _IN	Input Impedance	VDD=16V, FB=2V/3V, CS open	13	16.5	20	kΩ
Current Sense S	Section		1	•		
TLEB	Leading edge Blanking Time			330		ns
T _D OC	OCP control delay	GATE with 1nF to GND		70		ns
V _{TH} _OC	OCP threshold	FB=3.4V	0.690	0.740	0.790	V
Max_OC	Max_OCP for line comp	FB=3.4V	0.9	0.95	1	V
Vth_SBD	CS threshold for SBD short	VDD=16V		2.0		V
Td_SBD	Delay of SBD short protect	8 PWM cycle		8		CLK

联系人:陈先生13828992738 QQ3091784316

WS2295B Product Description

Oscillator Sect	ion					
Fosc	Frequency	VDD=16V, FB=3.2V	60	65	70	khz
D_max	Max duty	VDD=16V, FB=3.2V	70	75	82	%
Jitter period		For 65K		4		ms
Jitter range		For 65K		±5		%
Fosc_BM	Burst mode frequency	VDD=16V, Fb fall from 2V to burst		22		khz
Δf_temp	Frequency variation versus temp. Deviation	TEMP = -20 to 85°C		5		%
Δf_VDD	Frequency variation versus VDD	VDD = 12 to 25V		5		%
Thermal protect	tion					
T_shutdown	Thermal shutdown temperature			150		°C
Power MOSFE	Γ Section					
BVdss	MOSFET Drain-Source breakdown voltage		600			V
Ron	Static Drain to Source on resistance	WS2295B		3.4	4.5	ohm
IDSS	Output clamp voltage				10	uA

功能描述

WS2295B 是一款高集成度、高性能的电流模式 PWM 转换器 芯片。适用于电源适配器等中小功率(18W 以下)的开关电源设备与开关电源转换器。极低的启动电流与工作电流、以及 轻载或者无负载情况下的 burst mode 功能,都能有效的降低 开关电源系统的待机功耗,提高功率转换效率,从而使得 WS2295B 可以满足能效 6 的效率要求,并实现待机功耗小于 75mW。内置的同步斜坡补偿、反馈引脚的前沿消隐等功能不 仅能减少开关电源系统的元器件数目,还增加了系统的稳定性,避免谐波振荡的产生。WS2295B 还提供了多种全面的可恢复保护模式。主要特点功能描述如下。

启动电流和启动控制

WS2295B 的启动电流设计得很小(4uA),因此 VDD 能很快充电上升到脱离 UVLO 的域值电压以上,器件可以实现快速启动。大阻值的启动电阻可以被用来减少功耗,并且在应用中可以简化启动电路的设计,实现可靠的启动。对于一个典型的通用的 AC/DC 电源适配器设计 (输入电压范围90VAC-264VAC),一个2MΩ,0.125W 启动电阻可以和一个VDD 电容一起提供快速和低功耗的启动设计方案。

工作电压

WS2295B 具有很宽的工作电压范围(7.7V-34V), 因此相同的变压器参数可以满足不同输出电压规格的系统要求,从而方便了变压器的设计和提高了系统的兼容性。

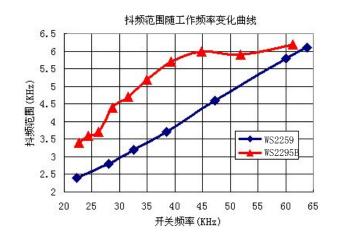
工作电流

WS2295B 具有很低的的工作电流(65KHz 时为 1.7mA),在 特机时芯片电流降至 0.9mA。低工作电流,以及 burst mode 控制电路可以有效地提高开关电源的转换效率;并且可以降低 对 VDD 保持电容的要求。

软启动(Soft-start)

在芯片上电时,过流保护阈值会分8步逐步上升,每步持续时间为32个开关周期,从而有效抑制了启动时的电流尖峰,降低了元件的应力,使系统工作更加稳定

脉冲模式(Burst Mode)


在无负载或者轻负载的情况下,开关电源中的大部分功耗来自于 MOSFET 的开关损耗、变压器的磁心损耗、以及缓冲电路

的损耗。功耗的大小与一定时间内 MOSFET 的开关次数成正比。减少开关次数也就减少了功耗,节约了能源。

WS2295B 内置的 Burst Mode 功能,可以根据负载情况自动调节开关模式。当系统处于无负载或者轻/中负载下,FB 端的输入电压会处于脉冲模式(Burst Mode)的域值电压之下。根据这个判断依据,器件进入脉冲模式控制。栅极驱动输出端只有在 VDD 电压低于预先设定的电平值,或者 FB 输入端被激活的情况下才会有输出。其他情况下,栅极驱动输出保持长关的状态以减少功耗,从而尽可能地减少待机功耗。高频开关的特性也减少了工作时的音频噪声。

优化的降频及抖频控制方法

WS2295B 内置了 65KHz 的最高工作频率,并优化了降频与 抖频的控制方法,传统的 PWM 控制 IC,其抖频范围会随频 率的降低而线性地降低,从而导致在中、轻载时由于频率较低、 抖频范围很小,EMI 性能明显变差; WS2295B 采用专利技术, 优化了抖频与降频的关系曲线,使得在全负载范围内都能保持 良好的 EMI 性能。

电流检测和前沿消隐

WS2295B 内部具有逐周电流限制(Cycle-by-Cycle Current Limiting)功能。开关电流通过检测电阻输入到 SENSE 引脚。引脚内部的前沿消隐电路可以消除 MOSFET 开启瞬间由于 snubber 二极管反向恢复造成的感应电压毛刺,因此 SENSE 输入端的外接 RC 滤波电路可以省去。限流比较器在消隐期间被禁止而无法关断内置 MOSFET。PWM 占空比由电流检测端的电压和 FB 输入端的电压决定。

内部同步斜坡补偿

WINSEMI MICROELECTRONICS WINSEMI MICROELECTRONICS WINSEMI MICROELECTRONICS WINSEMI MICROELECTRONICS WINSEMI MICROELECTRONICS

PWM 产生过程中,内置的斜坡补偿电路可以在电流检测输入

端的电压基础上叠加斜坡电压。这极大地增强了 CCM 下闭环的稳定性,避免了谐波振荡,减少了输出纹波电压。

EMI 系统。WS2295B 还在栅极驱动输出端内置了 13V 的嵌位 电路,有效地保护了内置 MOSFET 开关管并进一步降低损耗。

CS 开路及次边肖特基短路保护

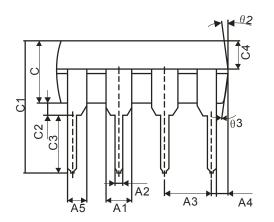
当 CS 开路时,上电后 WS2295B 将不会发出任何脉冲;当次 边肖特基短路时,WS2295B 将会在 8 个脉冲周期后进入保护 状态;以上两种保护均会进入 UVLO 自动重启模式,直至异 常消失

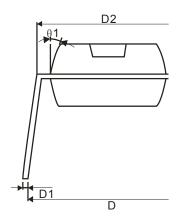
栅极驱动

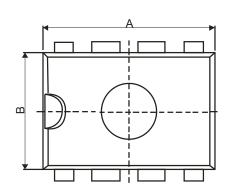
WS2295B 的 GATE 引脚连接到内置 MOSFET 的栅极以实现 开关控制。太弱的栅驱动强度会导致过大的开关损失,而太强 的驱动会产生过大的 EMI。WS2295B 通过内建图腾柱栅极驱 动电路的优化设计,实现了输出强度和死区时间控制两者之间 的良好折中。优越的软开关技术有效地抑制了每个周期开启时 的电流尖峰,从而可以更容易的设计出理想的低待机损耗和

保护控制

WS2295B 提供了全面的保护特性,系统可以获得最高可靠性。其中包括逐周限流保护(OCP),过载保护(OLP),过温保护(OTP),CS开路保护,次边肖特基短路保护,片上VDD过压保护(VDD_OVP)及嵌位(VDD_clamp)以及低压关断(UVLO):


WS2295B 内置的 OCP 保护电路可以有效地检测 PWM 控制信号的占空比。


在输出过载的情况下,FB 输入电压超过功率限制阈值大于 TD_PL 时,控制电路将关断 MOSFET 输出。当 VDD 低于 UVLO 门限电压时器件重启。


VDD 高于阈值时将嵌位。当 VDD 低于 UVLO 门限的时候,MOSFET 被关断,器件随后进入上电启动程序。

WINSEMI®

DIP8/7封装外观图

	Winsemi					
Comple al	Dimensions in Millimeters		Dimensions in Inches			
Symbol	Min	Max	Min	Max		
А	9.00	9.50	0.354	0.374		
В	6.10	6.60	0.240	0.260		
С	3.0	3.4	0.118	0.134		
A1	1.474	1.574	0.058	0.062		
A2	0.41	0.53	0.016	0.021		
A3	2.44	2.64	0.096	0.104		
A4	0.51TYP		0.02TYP			
A5	0.99	0.99TYP		TYP		
C1	6.6	7.30	0.260	0.287		
C2	0.50TYP		0.02	TYP		
C3	3.00	3.40	0.118	0.134		
C4	1.47	1.65	0.058	0.065		
D	7.62	9.3	0.300	0.366		
D1	0.24	0.32	0.009	0.013		
D2	7.62	TYP	0.3TYP			

联系人:陈先生13828992738 QQ3091784316

WS2295B Product Description

注意事项

- 1. 购买时请认清公司商标,如有疑问请与公司本部联系。
- 2. 在电路设计时请不要超过器件的绝对最大额定值,否则会影响整机的可靠性。
- 3. 本说明书如有版本变更不另外告知。

联系方式

深圳市津利帝科技有限公司

公司地址:深圳市龙岗区布吉街道上水径布龙路171号全伟达工业园3号楼2楼

邮编:518114

总机:0755-89818866 传真:0755-84276832

网址:http://www.jinlidi.cn 手机:13828992738 陈先生

QQ: 3091784316

WINSEMI MICROELECTRONICS WINSEMI MICROELECTRONICS WINSEMI MICROELECTRONICS WINSEMI MICROELECTRONICS WINSEMI MICROELECTRONICS